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• ~ 6 Antineutrinos are produced by each fission:

• Rates near reactors are high
• 0.64 ton detector, 24.5 m from 3.46 GW reactor core
• 3800 events/day for a 100% efficient detector

• Rate is sensitive to the isotopic composition of the core
• About 250 kg of Plutonium is generated during a PWR fuel cycle
• Detailed reactor simulations show antineutrino rate change of about 5-10%

through a 300-500 day PWR fuel cycle, caused by Pu ingrowth

Some Salient Antineutrino/Reactor Properties
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The Antineutrino Rate Varies with Time and Isotope

Relative Fission Rates Vary in Time
Rate of
Antineutrinos/Fission
Varies With Isotope
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Predicted Effect of Fuel Burnup

Days at Full Power
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Prediction for our Dataset
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Antineutrino Detection
• We use “conventional” antineutrino detection technique

– inverse beta-decay produces a pair of correlated
events in the detector

• Gd loaded into the scintillator captures the resulting
neutron after a relatively short time

12750

• Positron
– Immediate
– 1- 8 MeV (incl 511 keV γs)

• Neutron
– Delayed (τ = 28 µs)
– ~ 8 MeV gamma shower
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Events that mimic antineutrinos (Background!)
• Antineutrinos are not the only particles that produce this signature
• Cosmic ray muons produce fast neutrons, which scatter off protons

and can then be captured on Gd
• Important to tag muons entering detector and shield against fast

neutrons – overburden very desirable

12750

• Recoiling proton
– Immediate
– ~ MeV

• Neutron
– Delayed (t = ~28 µs)
– ~ 8 MeV gamma shower



LLNL

Prototype deployment –
San Onofre Nuclear Generating Station
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• Tendon gallery is ideal location
– Rarely accessed for plant

operation
– As close to reactor as you can

get while being outside
containment

– Provides ~20 mwe overburden
• 3.4 GWt => 1021 ν / s
• In tendon gallery  ~1017 ν / s per m2

• Around 3800 interactions
expected per day

San Onofre Nuclear Generating Station
Unit 2 Tendon Gallery

23. 8 m

Rea ct or

Co r e

Rea ct or

Co n ta inment

Bui ld ing

Ten do n

Gal le ry
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Design Principles

• Simple, inexpensive, robust
– Rapid deployment
– Use well known detection concepts/technology

• Antineutrino detection via inverse beta decay
• Gd loaded scintillator
• central target surrounded by various shielding layers

– Physically robust for reactor environment
(e.g. steel scintillator vessels)

– Modular for manhole access
• Do a relative measurement

– Use automatic calibration based on background
lines to account for all time dependent variations
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Sandia/LLNL Antineutrino Detector

• Detector system is…
– 0.64 tons of

Gd doped liquid
scintillator
readout by
8x 8” PMT

– 6-sided water
shield

– 5-sided active
muon veto
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Installation at SONGS
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Installation at SONGS
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Candidate event extraction
• Online calibration using

2.6 MeV background gamma
• Cuts are applied to extract

correlated events:
– energy cuts

>2.39 MeV prompt
>3.5   MeV delayed

– at least 100µs after a muon
in the veto detector

• Examine time between prompt
and delayed to pick out
neutron captures on Gd

• Event-by-event can not
distinguish antineutrinos from
random coincidences –
perform statistical separation

Inter-event time (µs)
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Reactor Monitoring using only ν
R
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Relative power monitoring precision

Weekly average 
2.5% relative uncertainty
in thermal power estimate 
(normalized to 30 day avg.) 

Daily average 
6.2% relative uncertainty
in thermal power estimate 
(normalized to 30 day avg.) 
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Clear indication of antineutrino detection

Prompt Energy (MeV)
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Detector Stability
• To observe the effect of fuel burnup, we must ensure

that our detector is stable over the data taking period
• We count the number of events passing the energy

cuts, and from this estimate the effectiveness of
energy calibration.
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Our Dataset
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Burnup Measurement
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to our burnup
model
(Consumption of

1.5 tons of 235U
Production of

250 kg of 239Pu)

• Detector is
stable to ~ 1%;
burnup is ~ 10%
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Lessons Learnt

• We need:
– Better gamma shielding/cleaner material
– More, and more uniform, light collection
– Better calibration

(background lines won’t be enough, no sources possible?)
– Smaller footprint

• We would like
– Less flammable/aggressive scintillator
– Smaller surface/volume ratio

• Leading to higher efficiency in a smaller volume,
with excellent stability
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Conclusions
• Antineutrino detectors can be used to monitor nuclear

reactors remotely and non-invasively
– This has been firmly established by prior experiments and is being

confirmed by us with a more practical/simple device

• Our simple device has been very successful and invaluable as
a demonstration, but we can and must do better

• We will begin a new detector development program this year,
beginning by studying the use of steel shielding with shallow
overburden

• It is important in our discussions to identify the necessary
features to make nonproliferation detectors successful, but
not too complex or expensive
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Efficiencies

We estimate:
• DAQ efficiency: 58%

– Muon deadtime, shortest time measured between events is 10µs

• Positron detection (3 MeV cut): 55%
– High uncorrelated background rate <3 MeV

• Neutron detection : 40%
– Poor containment of Gd shower with only 1m3

• Fiducial Volume: 83%

• Total: 11%

At present, our measurement is relative


